Branch data Line data Source code
1 : : /* sha256.c - TinyCrypt SHA-256 crypto hash algorithm implementation */
2 : :
3 : : /*
4 : : * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
5 : : *
6 : : * Redistribution and use in source and binary forms, with or without
7 : : * modification, are permitted provided that the following conditions are met:
8 : : *
9 : : * - Redistributions of source code must retain the above copyright notice,
10 : : * this list of conditions and the following disclaimer.
11 : : *
12 : : * - Redistributions in binary form must reproduce the above copyright
13 : : * notice, this list of conditions and the following disclaimer in the
14 : : * documentation and/or other materials provided with the distribution.
15 : : *
16 : : * - Neither the name of Intel Corporation nor the names of its contributors
17 : : * may be used to endorse or promote products derived from this software
18 : : * without specific prior written permission.
19 : : *
20 : : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 : : * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 : : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 : : * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 : : * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 : : * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 : : * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 : : * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 : : * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 : : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 : : * POSSIBILITY OF SUCH DAMAGE.
31 : : */
32 : :
33 : : #include <tinycrypt/sha256.h>
34 : : #include <tinycrypt/constants.h>
35 : : #include <tinycrypt/utils.h>
36 : :
37 : : static void compress(unsigned int *iv, const uint8_t *data);
38 : :
39 : 0 : int tc_sha256_init(TCSha256State_t s)
40 : : {
41 : : /* input sanity check: */
42 [ # # ]: 0 : if (s == (TCSha256State_t) 0) {
43 : : return TC_CRYPTO_FAIL;
44 : : }
45 : :
46 : : /*
47 : : * Setting the initial state values.
48 : : * These values correspond to the first 32 bits of the fractional parts
49 : : * of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17
50 : : * and 19.
51 : : */
52 : 0 : _set((uint8_t *) s, 0x00, sizeof(*s));
53 : 0 : s->iv[0] = 0x6a09e667;
54 : 0 : s->iv[1] = 0xbb67ae85;
55 : 0 : s->iv[2] = 0x3c6ef372;
56 : 0 : s->iv[3] = 0xa54ff53a;
57 : 0 : s->iv[4] = 0x510e527f;
58 : 0 : s->iv[5] = 0x9b05688c;
59 : 0 : s->iv[6] = 0x1f83d9ab;
60 : 0 : s->iv[7] = 0x5be0cd19;
61 : :
62 : 0 : return TC_CRYPTO_SUCCESS;
63 : : }
64 : :
65 : 0 : int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen)
66 : : {
67 : : /* input sanity check: */
68 : 0 : if (s == (TCSha256State_t) 0 ||
69 [ # # ]: 0 : data == (void *) 0) {
70 : : return TC_CRYPTO_FAIL;
71 [ # # ]: 0 : } else if (datalen == 0) {
72 : : return TC_CRYPTO_SUCCESS;
73 : : }
74 : :
75 [ # # ]: 0 : while (datalen-- > 0) {
76 : 0 : s->leftover[s->leftover_offset++] = *(data++);
77 [ # # ]: 0 : if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) {
78 : 0 : compress(s->iv, s->leftover);
79 : 0 : s->leftover_offset = 0;
80 : 0 : s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3);
81 : : }
82 : : }
83 : :
84 : : return TC_CRYPTO_SUCCESS;
85 : : }
86 : :
87 : 0 : int tc_sha256_final(uint8_t *digest, TCSha256State_t s)
88 : : {
89 : 0 : unsigned int i;
90 : :
91 : : /* input sanity check: */
92 : 0 : if (digest == (uint8_t *) 0 ||
93 [ # # ]: 0 : s == (TCSha256State_t) 0) {
94 : : return TC_CRYPTO_FAIL;
95 : : }
96 : :
97 : 0 : s->bits_hashed += (s->leftover_offset << 3);
98 : :
99 : 0 : s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */
100 [ # # ]: 0 : if (s->leftover_offset > (sizeof(s->leftover) - 8)) {
101 : : /* there is not room for all the padding in this block */
102 : 0 : _set(s->leftover + s->leftover_offset, 0x00,
103 : : sizeof(s->leftover) - s->leftover_offset);
104 : 0 : compress(s->iv, s->leftover);
105 : 0 : s->leftover_offset = 0;
106 : : }
107 : :
108 : : /* add the padding and the length in big-Endian format */
109 : 0 : _set(s->leftover + s->leftover_offset, 0x00,
110 : 0 : sizeof(s->leftover) - 8 - s->leftover_offset);
111 : 0 : s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed);
112 : 0 : s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8);
113 : 0 : s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16);
114 : 0 : s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24);
115 : 0 : s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32);
116 : 0 : s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40);
117 : 0 : s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48);
118 : 0 : s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56);
119 : :
120 : : /* hash the padding and length */
121 : 0 : compress(s->iv, s->leftover);
122 : :
123 : : /* copy the iv out to digest */
124 [ # # ]: 0 : for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) {
125 : 0 : unsigned int t = *((unsigned int *) &s->iv[i]);
126 : 0 : *digest++ = (uint8_t)(t >> 24);
127 : 0 : *digest++ = (uint8_t)(t >> 16);
128 : 0 : *digest++ = (uint8_t)(t >> 8);
129 : 0 : *digest++ = (uint8_t)(t);
130 : : }
131 : :
132 : : /* destroy the current state */
133 : 0 : _set(s, 0, sizeof(*s));
134 : :
135 : 0 : return TC_CRYPTO_SUCCESS;
136 : : }
137 : :
138 : : /*
139 : : * Initializing SHA-256 Hash constant words K.
140 : : * These values correspond to the first 32 bits of the fractional parts of the
141 : : * cube roots of the first 64 primes between 2 and 311.
142 : : */
143 : : static const unsigned int k256[64] = {
144 : : 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
145 : : 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
146 : : 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
147 : : 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
148 : : 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
149 : : 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
150 : : 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
151 : : 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
152 : : 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
153 : : 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
154 : : 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
155 : : };
156 : :
157 : 0 : static inline unsigned int ROTR(unsigned int a, unsigned int n)
158 : : {
159 : 0 : return (((a) >> n) | ((a) << (32 - n)));
160 : : }
161 : :
162 : : #define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22))
163 : : #define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25))
164 : : #define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3))
165 : : #define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10))
166 : :
167 : : #define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c)))
168 : : #define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)))
169 : :
170 : 0 : static inline unsigned int BigEndian(const uint8_t **c)
171 : : {
172 : 0 : unsigned int n = 0;
173 : :
174 : 0 : n = (((unsigned int)(*((*c)++))) << 24);
175 : 0 : n |= ((unsigned int)(*((*c)++)) << 16);
176 : 0 : n |= ((unsigned int)(*((*c)++)) << 8);
177 : 0 : n |= ((unsigned int)(*((*c)++)));
178 : 0 : return n;
179 : : }
180 : :
181 : 0 : static void compress(unsigned int *iv, const uint8_t *data)
182 : : {
183 : 0 : unsigned int a, b, c, d, e, f, g, h;
184 : 0 : unsigned int s0, s1;
185 : 0 : unsigned int t1, t2;
186 : 0 : unsigned int work_space[16];
187 : 0 : unsigned int n;
188 : 0 : unsigned int i;
189 : :
190 : 0 : a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3];
191 : 0 : e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7];
192 : :
193 [ # # ]: 0 : for (i = 0; i < 16; ++i) {
194 : 0 : n = BigEndian(&data);
195 : 0 : t1 = work_space[i] = n;
196 : 0 : t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
197 : 0 : t2 = Sigma0(a) + Maj(a, b, c);
198 : 0 : h = g; g = f; f = e; e = d + t1;
199 : 0 : d = c; c = b; b = a; a = t1 + t2;
200 : : }
201 : :
202 [ # # ]: 0 : for ( ; i < 64; ++i) {
203 : 0 : s0 = work_space[(i+1)&0x0f];
204 : 0 : s0 = sigma0(s0);
205 : 0 : s1 = work_space[(i+14)&0x0f];
206 : 0 : s1 = sigma1(s1);
207 : :
208 : 0 : t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf];
209 : 0 : t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
210 : 0 : t2 = Sigma0(a) + Maj(a, b, c);
211 : 0 : h = g; g = f; f = e; e = d + t1;
212 : 0 : d = c; c = b; b = a; a = t1 + t2;
213 : : }
214 : :
215 : 0 : iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d;
216 : 0 : iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h;
217 : 0 : }
|