LCOV - code coverage report
Current view: top level - externals/tinycrypt/lib/source - cmac_mode.c (source / functions) Hit Total Coverage
Test: lcov.info Lines: 0 77 0.0 %
Date: 2024-09-16 20:15:30 Functions: 0 6 0.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 0 36 0.0 %

           Branch data     Line data    Source code
       1                 :            : /* cmac_mode.c - TinyCrypt CMAC mode implementation */
       2                 :            : 
       3                 :            : /*
       4                 :            :  *  Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
       5                 :            :  *
       6                 :            :  *  Redistribution and use in source and binary forms, with or without
       7                 :            :  *  modification, are permitted provided that the following conditions are met:
       8                 :            :  *
       9                 :            :  *    - Redistributions of source code must retain the above copyright notice,
      10                 :            :  *     this list of conditions and the following disclaimer.
      11                 :            :  *
      12                 :            :  *    - Redistributions in binary form must reproduce the above copyright
      13                 :            :  *    notice, this list of conditions and the following disclaimer in the
      14                 :            :  *    documentation and/or other materials provided with the distribution.
      15                 :            :  *
      16                 :            :  *    - Neither the name of Intel Corporation nor the names of its contributors
      17                 :            :  *    may be used to endorse or promote products derived from this software
      18                 :            :  *    without specific prior written permission.
      19                 :            :  *
      20                 :            :  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
      21                 :            :  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      22                 :            :  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      23                 :            :  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
      24                 :            :  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      25                 :            :  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
      26                 :            :  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
      27                 :            :  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
      28                 :            :  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      29                 :            :  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      30                 :            :  *  POSSIBILITY OF SUCH DAMAGE.
      31                 :            :  */
      32                 :            : 
      33                 :            : #include <tinycrypt/aes.h>
      34                 :            : #include <tinycrypt/cmac_mode.h>
      35                 :            : #include <tinycrypt/constants.h>
      36                 :            : #include <tinycrypt/utils.h>
      37                 :            : 
      38                 :            : /* max number of calls until change the key (2^48).*/
      39                 :            : static const uint64_t MAX_CALLS = ((uint64_t)1 << 48);
      40                 :            : 
      41                 :            : /*
      42                 :            :  *  gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
      43                 :            :  *  array with byte 0 the most significant and byte 15 the least significant.
      44                 :            :  *  High bit carry reduction is based on the primitive polynomial
      45                 :            :  *
      46                 :            :  *                     X^128 + X^7 + X^2 + X + 1,
      47                 :            :  *
      48                 :            :  *  which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
      49                 :            :  *  since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
      50                 :            :  *  addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
      51                 :            :  *  add X^128 to both sides to get
      52                 :            :  *
      53                 :            :  *       X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
      54                 :            :  *
      55                 :            :  *  and the coefficients of the polynomial on the right hand side form the
      56                 :            :  *  string 1000 0111 = 0x87, which is the value of gf_wrap.
      57                 :            :  *
      58                 :            :  *  This gets used in the following way. Doubling in GF(2^128) is just a left
      59                 :            :  *  shift by 1 bit, except when the most significant bit is 1. In the latter
      60                 :            :  *  case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
      61                 :            :  *  that overflows beyond 128 bits can be replaced by addition of
      62                 :            :  *  X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
      63                 :            :  *  in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
      64                 :            :  *  into the low order byte after a left shift when the starting high order
      65                 :            :  *  bit is 1.
      66                 :            :  */
      67                 :            : const unsigned char gf_wrap = 0x87;
      68                 :            : 
      69                 :            : /*
      70                 :            :  *  assumes: out != NULL and points to a GF(2^n) value to receive the
      71                 :            :  *            doubled value;
      72                 :            :  *           in != NULL and points to a 16 byte GF(2^n) value
      73                 :            :  *            to double;
      74                 :            :  *           the in and out buffers do not overlap.
      75                 :            :  *  effects: doubles the GF(2^n) value pointed to by "in" and places
      76                 :            :  *           the result in the GF(2^n) value pointed to by "out."
      77                 :            :  */
      78                 :          0 : void gf_double(uint8_t *out, uint8_t *in)
      79                 :            : {
      80                 :            : 
      81                 :            :         /* start with low order byte */
      82                 :          0 :         uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
      83                 :            : 
      84                 :            :         /* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
      85         [ #  # ]:          0 :         uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
      86                 :            : 
      87                 :          0 :         out += (TC_AES_BLOCK_SIZE - 1);
      88                 :          0 :         for (;;) {
      89                 :          0 :                 *out-- = (*x << 1) ^ carry;
      90         [ #  # ]:          0 :                 if (x == in) {
      91                 :            :                         break;
      92                 :            :                 }
      93                 :          0 :                 carry = *x-- >> 7;
      94                 :            :         }
      95                 :          0 : }
      96                 :            : 
      97                 :          0 : int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
      98                 :            : {
      99                 :            : 
     100                 :            :         /* input sanity check: */
     101                 :          0 :         if (s == (TCCmacState_t) 0 ||
     102         [ #  # ]:          0 :             key == (const uint8_t *) 0) {
     103                 :            :                 return TC_CRYPTO_FAIL;
     104                 :            :         }
     105                 :            : 
     106                 :            :         /* put s into a known state */
     107                 :          0 :         _set(s, 0, sizeof(*s));
     108                 :          0 :         s->sched = sched;
     109                 :            : 
     110                 :            :         /* configure the encryption key used by the underlying block cipher */
     111                 :          0 :         tc_aes128_set_encrypt_key(s->sched, key);
     112                 :            : 
     113                 :            :         /* compute s->K1 and s->K2 from s->iv using s->keyid */
     114                 :          0 :         _set(s->iv, 0, TC_AES_BLOCK_SIZE);
     115                 :          0 :         tc_aes_encrypt(s->iv, s->iv, s->sched);
     116                 :          0 :         gf_double (s->K1, s->iv);
     117                 :          0 :         gf_double (s->K2, s->K1);
     118                 :            : 
     119                 :            :         /* reset s->iv to 0 in case someone wants to compute now */
     120                 :          0 :         tc_cmac_init(s);
     121                 :            : 
     122                 :          0 :         return TC_CRYPTO_SUCCESS;
     123                 :            : }
     124                 :            : 
     125                 :          0 : int tc_cmac_erase(TCCmacState_t s)
     126                 :            : {
     127         [ #  # ]:          0 :         if (s == (TCCmacState_t) 0) {
     128                 :            :                 return TC_CRYPTO_FAIL;
     129                 :            :         }
     130                 :            : 
     131                 :            :         /* destroy the current state */
     132                 :          0 :         _set(s, 0, sizeof(*s));
     133                 :            : 
     134                 :          0 :         return TC_CRYPTO_SUCCESS;
     135                 :            : }
     136                 :            : 
     137                 :          0 : int tc_cmac_init(TCCmacState_t s)
     138                 :            : {
     139                 :            :         /* input sanity check: */
     140         [ #  # ]:          0 :         if (s == (TCCmacState_t) 0) {
     141                 :            :                 return TC_CRYPTO_FAIL;
     142                 :            :         }
     143                 :            : 
     144                 :            :         /* CMAC starts with an all zero initialization vector */
     145                 :          0 :         _set(s->iv, 0, TC_AES_BLOCK_SIZE);
     146                 :            : 
     147                 :            :         /* and the leftover buffer is empty */
     148                 :          0 :         _set(s->leftover, 0, TC_AES_BLOCK_SIZE);
     149                 :          0 :         s->leftover_offset = 0;
     150                 :            : 
     151                 :            :         /* Set countdown to max number of calls allowed before re-keying: */
     152                 :          0 :         s->countdown = MAX_CALLS;
     153                 :            : 
     154                 :          0 :         return TC_CRYPTO_SUCCESS;
     155                 :            : }
     156                 :            : 
     157                 :          0 : int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
     158                 :            : {
     159                 :          0 :         unsigned int i;
     160                 :            : 
     161                 :            :         /* input sanity check: */
     162         [ #  # ]:          0 :         if (s == (TCCmacState_t) 0) {
     163                 :            :                 return TC_CRYPTO_FAIL;
     164                 :            :         }
     165         [ #  # ]:          0 :         if (data_length == 0) {
     166                 :            :                 return  TC_CRYPTO_SUCCESS;
     167                 :            :         }
     168         [ #  # ]:          0 :         if (data == (const uint8_t *) 0) {
     169                 :            :                 return TC_CRYPTO_FAIL;
     170                 :            :         }
     171                 :            : 
     172         [ #  # ]:          0 :         if (s->countdown == 0) {
     173                 :            :                 return TC_CRYPTO_FAIL;
     174                 :            :         }
     175                 :            : 
     176                 :          0 :         s->countdown--;
     177                 :            : 
     178         [ #  # ]:          0 :         if (s->leftover_offset > 0) {
     179                 :            :                 /* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
     180                 :          0 :                 size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
     181                 :            : 
     182         [ #  # ]:          0 :                 if (data_length < remaining_space) {
     183                 :            :                         /* still not enough data to encrypt this time either */
     184                 :          0 :                         _copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
     185                 :          0 :                         s->leftover_offset += data_length;
     186                 :          0 :                         return TC_CRYPTO_SUCCESS;
     187                 :            :                 }
     188                 :            :                 /* leftover block is now full; encrypt it first */
     189                 :          0 :                 _copy(&s->leftover[s->leftover_offset],
     190                 :            :                       remaining_space,
     191                 :            :                       data,
     192                 :            :                       remaining_space);
     193                 :          0 :                 data_length -= remaining_space;
     194                 :          0 :                 data += remaining_space;
     195                 :          0 :                 s->leftover_offset = 0;
     196                 :            : 
     197         [ #  # ]:          0 :                 for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
     198                 :          0 :                         s->iv[i] ^= s->leftover[i];
     199                 :            :                 }
     200                 :          0 :                 tc_aes_encrypt(s->iv, s->iv, s->sched);
     201                 :            :         }
     202                 :            : 
     203                 :            :         /* CBC encrypt each (except the last) of the data blocks */
     204         [ #  # ]:          0 :         while (data_length > TC_AES_BLOCK_SIZE) {
     205         [ #  # ]:          0 :                 for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
     206                 :          0 :                         s->iv[i] ^= data[i];
     207                 :            :                 }
     208                 :          0 :                 tc_aes_encrypt(s->iv, s->iv, s->sched);
     209                 :          0 :                 data += TC_AES_BLOCK_SIZE;
     210                 :          0 :                 data_length  -= TC_AES_BLOCK_SIZE;
     211                 :            :         }
     212                 :            : 
     213         [ #  # ]:          0 :         if (data_length > 0) {
     214                 :            :                 /* save leftover data for next time */
     215                 :          0 :                 _copy(s->leftover, data_length, data, data_length);
     216                 :          0 :                 s->leftover_offset = data_length;
     217                 :            :         }
     218                 :            : 
     219                 :            :         return TC_CRYPTO_SUCCESS;
     220                 :            : }
     221                 :            : 
     222                 :          0 : int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
     223                 :            : {
     224                 :          0 :         uint8_t *k;
     225                 :          0 :         unsigned int i;
     226                 :            : 
     227                 :            :         /* input sanity check: */
     228                 :          0 :         if (tag == (uint8_t *) 0 ||
     229         [ #  # ]:          0 :             s == (TCCmacState_t) 0) {
     230                 :            :                 return TC_CRYPTO_FAIL;
     231                 :            :         }
     232                 :            : 
     233         [ #  # ]:          0 :         if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
     234                 :            :                 /* the last message block is a full-sized block */
     235                 :          0 :                 k = (uint8_t *) s->K1;
     236                 :            :         } else {
     237                 :            :                 /* the final message block is not a full-sized  block */
     238                 :          0 :                 size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
     239                 :            : 
     240                 :          0 :                 _set(&s->leftover[s->leftover_offset], 0, remaining);
     241                 :          0 :                 s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
     242                 :          0 :                 k = (uint8_t *) s->K2;
     243                 :            :         }
     244         [ #  # ]:          0 :         for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
     245                 :          0 :                 s->iv[i] ^= s->leftover[i] ^ k[i];
     246                 :            :         }
     247                 :            : 
     248                 :          0 :         tc_aes_encrypt(tag, s->iv, s->sched);
     249                 :            : 
     250                 :            :         /* erasing state: */
     251                 :          0 :         tc_cmac_erase(s);
     252                 :            : 
     253                 :          0 :         return TC_CRYPTO_SUCCESS;
     254                 :            : }

Generated by: LCOV version 1.14