Branch data Line data Source code
1 : : /* aes_encrypt.c - TinyCrypt implementation of AES encryption procedure */
2 : :
3 : : /*
4 : : * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
5 : : *
6 : : * Redistribution and use in source and binary forms, with or without
7 : : * modification, are permitted provided that the following conditions are met:
8 : : *
9 : : * - Redistributions of source code must retain the above copyright notice,
10 : : * this list of conditions and the following disclaimer.
11 : : *
12 : : * - Redistributions in binary form must reproduce the above copyright
13 : : * notice, this list of conditions and the following disclaimer in the
14 : : * documentation and/or other materials provided with the distribution.
15 : : *
16 : : * - Neither the name of Intel Corporation nor the names of its contributors
17 : : * may be used to endorse or promote products derived from this software
18 : : * without specific prior written permission.
19 : : *
20 : : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 : : * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 : : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 : : * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 : : * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 : : * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 : : * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 : : * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 : : * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 : : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 : : * POSSIBILITY OF SUCH DAMAGE.
31 : : */
32 : :
33 : : #include <tinycrypt/aes.h>
34 : : #include <tinycrypt/utils.h>
35 : : #include <tinycrypt/constants.h>
36 : :
37 : : static const uint8_t sbox[256] = {
38 : : 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
39 : : 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
40 : : 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
41 : : 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
42 : : 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
43 : : 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
44 : : 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
45 : : 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
46 : : 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
47 : : 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
48 : : 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
49 : : 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
50 : : 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
51 : : 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
52 : : 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
53 : : 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
54 : : 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
55 : : 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
56 : : 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
57 : : 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
58 : : 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
59 : : 0xb0, 0x54, 0xbb, 0x16
60 : : };
61 : :
62 : 0 : static inline unsigned int rotword(unsigned int a)
63 : : {
64 : 0 : return (((a) >> 24)|((a) << 8));
65 : : }
66 : :
67 : : #define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o))
68 : : #define subword(a)(subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0))
69 : :
70 : 0 : int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
71 : : {
72 : 0 : const unsigned int rconst[11] = {
73 : : 0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
74 : : 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
75 : : };
76 : 0 : unsigned int i;
77 : 0 : unsigned int t;
78 : :
79 [ # # ]: 0 : if (s == (TCAesKeySched_t) 0) {
80 : : return TC_CRYPTO_FAIL;
81 [ # # ]: 0 : } else if (k == (const uint8_t *) 0) {
82 : : return TC_CRYPTO_FAIL;
83 : : }
84 : :
85 [ # # ]: 0 : for (i = 0; i < Nk; ++i) {
86 : 0 : s->words[i] = (k[Nb*i]<<24) | (k[Nb*i+1]<<16) |
87 : 0 : (k[Nb*i+2]<<8) | (k[Nb*i+3]);
88 : : }
89 : :
90 [ # # ]: 0 : for (; i < (Nb * (Nr + 1)); ++i) {
91 : 0 : t = s->words[i-1];
92 [ # # ]: 0 : if ((i % Nk) == 0) {
93 : 0 : t = subword(rotword(t)) ^ rconst[i/Nk];
94 : : }
95 : 0 : s->words[i] = s->words[i-Nk] ^ t;
96 : : }
97 : :
98 : : return TC_CRYPTO_SUCCESS;
99 : : }
100 : :
101 : 0 : static inline void add_round_key(uint8_t *s, const unsigned int *k)
102 : : {
103 : 0 : s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
104 : 0 : s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
105 : 0 : s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
106 : 0 : s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
107 : 0 : s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
108 : 0 : s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
109 : 0 : s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
110 : 0 : s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
111 : 0 : }
112 : :
113 : 0 : static inline void sub_bytes(uint8_t *s)
114 : : {
115 : 0 : unsigned int i;
116 : :
117 [ # # ]: 0 : for (i = 0; i < (Nb * Nk); ++i) {
118 : 0 : s[i] = sbox[s[i]];
119 : : }
120 : 0 : }
121 : :
122 : : #define triple(a)(_double_byte(a)^(a))
123 : :
124 : 0 : static inline void mult_row_column(uint8_t *out, const uint8_t *in)
125 : : {
126 : 0 : out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
127 : 0 : out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
128 : 0 : out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
129 : 0 : out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
130 : 0 : }
131 : :
132 : 0 : static inline void mix_columns(uint8_t *s)
133 : : {
134 : 0 : uint8_t t[Nb*Nk];
135 : :
136 : 0 : mult_row_column(t, s);
137 : 0 : mult_row_column(&t[Nb], s+Nb);
138 : 0 : mult_row_column(&t[2 * Nb], s + (2 * Nb));
139 : 0 : mult_row_column(&t[3 * Nb], s + (3 * Nb));
140 : 0 : (void) _copy(s, sizeof(t), t, sizeof(t));
141 : 0 : }
142 : :
143 : : /*
144 : : * This shift_rows also implements the matrix flip required for mix_columns, but
145 : : * performs it here to reduce the number of memory operations.
146 : : */
147 : 0 : static inline void shift_rows(uint8_t *s)
148 : : {
149 : 0 : uint8_t t[Nb * Nk];
150 : :
151 : 0 : t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
152 : 0 : t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
153 : 0 : t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
154 : 0 : t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
155 : 0 : (void) _copy(s, sizeof(t), t, sizeof(t));
156 : 0 : }
157 : :
158 : 0 : int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
159 : : {
160 : 0 : uint8_t state[Nk*Nb];
161 : 0 : unsigned int i;
162 : :
163 [ # # ]: 0 : if (out == (uint8_t *) 0) {
164 : : return TC_CRYPTO_FAIL;
165 [ # # ]: 0 : } else if (in == (const uint8_t *) 0) {
166 : : return TC_CRYPTO_FAIL;
167 [ # # ]: 0 : } else if (s == (TCAesKeySched_t) 0) {
168 : : return TC_CRYPTO_FAIL;
169 : : }
170 : :
171 : 0 : (void)_copy(state, sizeof(state), in, sizeof(state));
172 : 0 : add_round_key(state, s->words);
173 : :
174 [ # # ]: 0 : for (i = 0; i < (Nr - 1); ++i) {
175 : 0 : sub_bytes(state);
176 : 0 : shift_rows(state);
177 : 0 : mix_columns(state);
178 : 0 : add_round_key(state, s->words + Nb*(i+1));
179 : : }
180 : :
181 : 0 : sub_bytes(state);
182 : 0 : shift_rows(state);
183 : 0 : add_round_key(state, s->words + Nb*(i+1));
184 : :
185 : 0 : (void)_copy(out, sizeof(state), state, sizeof(state));
186 : :
187 : : /* zeroing out the state buffer */
188 : 0 : _set(state, TC_ZERO_BYTE, sizeof(state));
189 : :
190 : 0 : return TC_CRYPTO_SUCCESS;
191 : : }
|